高分辨率EEG的空间分析

本文详细阐述了高分辨率EEG在脑功能研究中的重要性,强调了空间分析方法如脑电地形图、全局场功率和全局地形图差异在理解大脑网络动力学和疾病标志物中的作用。通过分析头皮电位场的空间频率,指出需要足够数量的电极以避免空间混叠和源定位错误。同时,介绍了源定位技术,如分布式源建模,以及电极数量对定位精度的影响。
摘要由CSDN通过智能技术生成

导读

高分辨率脑电图记录已成为许多人脑功能实验研究的标准,其主要目标是使用越来越稳健和精确的方法进行源定位。然而,高分辨率EEG也允许在头皮水平上对EEG和诱发电位进行空间分析,从而识别头皮电位场的地形特征,其在理解人脑大规模网络动力学以及作为神经精神疾病标志物方面的价值已得到证实。本文阐明了这种空间分析方法的优点和局限性,以及可以从中获得的信息。此外,头皮电位场的空间频率高于先前的假设,并讨论了正确捕获这些空间频率所需通道数量的结果。

前言

由于硬件和软件技术的进步,从多通道阵列记录脑电图(EEG)已变得越来越流行。直觉上,人们会认为放置在头皮上的电极越多,从这些信号中获得的信息就越丰富。同时进行的颅内和头皮记录表明,需要激活数(6-10)平方厘米的皮层才能在头皮上产生信号,因此密集的电极间距只会对如此大面积活动产生的电场进行过采样。然而,这种基于癫痫活动的大小估计已被反复证明是不正确的。根据Hämäläinen等人(1993)的计算,只有40-200mm2的皮层表面同时活跃才能产生不可忽略的颅外场。因此,根据所记录的事件,头皮电位场的空间频率可以高得多,因此低密度记录会导致空间混叠、错误定位和焦点信号的丢失。许多研究者推荐电极间距离小于2cm的EEG阵列,如果要覆盖整个头部表面,则需要100 ~ 200个电极。

这种高密度记录不可避免地导致了一个问题,即如何正确地分析这些多重信号,因为它们既不是空间上独立的,也不是时间上独立的。研究人员在研究这种多通道记录时引入了诸如大脑映射、EEG场映射或大脑地形图等术语。这些术语指的是对大脑中活跃的神经元群通过容积传导产生的头皮电位场的空间分布进行分析。由于这些电位场或地形图的变化是由大脑中活跃神经元群分布的物理规律变化引起的,因此在多通道EEG分析中常用的方法是对不同条件下的EEG地形图进行描述和比较。在许多高密度EEG研究中,对诱发电位成分、癫痫棘波、特定频段的功率或特定的特征振荡(如纺锤波或慢波)进行表征已成为一种常用的方法。EEG地形图是源定位的前提,这些地形图的结构可以为潜在的源定位提供初步线索。如果随着时间的推移,不同条件或不同临床人群之间的地形图存在统计学上的差异,那么不同大脑网络活跃的结论是有效的。然而,需要适当的统计模式识别方法来区分地形图构型。

本文讨论了高分辨率EEG的必要性,并描述和说明了脑电图和诱发电位的不同地形分析方法。探讨了与经典波形分析相比,可以从这种分析中获得的信息,以及对所得结果进行解释的优点和局限性。

EEG空间分析

对分布式电极阵列进行采样,可以从电位图的角度揭示电场的地形分布。基于脑地形图的视觉检查对脑功能定位的过度解读导致了该方法的可信度下降。然而,这些专注于头皮电位场空间分布的初步努力引发了人们对定量空间分析方法的兴趣高涨,最终导致了以EEG脑图为先导的源成像技术。目前,基于高分辨率EEG的源定位已成为许多实验和临床研究的标准,并且选择可能用于定位脑功能改变的空间特征的方法已经可用。多通道EEG空间分析技术已经发展成为一种强大的定量脑成像技术。

脑电地形图的参考独立性

传统上,脑电和诱发电位是通过表征波形特征来分析的,如自发脑电图的振幅和频率、峰值潜伏期或诱发电位成分的极性和振幅等。由于EEG是一个双极信号,这些特征取决于记录参考的选择。在给定电极上记录的信号总是反映目标和参考点的局部活动。据此,电生理学家提高了对感兴趣信号空间分布的认识。脑电图具有相同的目的:它能够可视化给定的电生理事件的空间分布。重要的是,脑电地形图与参考无关。参考只改变零电平(DC-shift),但地形图的地形特征不受影响。因此,EEG的地形分析是无参考的,消除了脑电信号的参考问题。脑电源成像也是如此,它完全基于电场的空间分布,也不受参考电极位置的影响。

虽然与波形分析相比,EEG和诱发电位图的参考独立性是EEG地形图分析的一个重要优势,但要注意的是,这并不适用于频域转换的数据:使用FFT或时频分析的频率转换计算给定电极信号相对于参考电极的幅值和相位。改变参考电极会改变目标位置的振幅和相位,从而改变给定频率下功率的地形分布。因此,时域的地形分析是无参考的,而频域的地形分析则不然。图1说明了这一重要事实,它对脑电信号的频域分析(包括越来越多地使用EEG传感器之间的功能连接分析)具有重要影响。

图1.参考电极对头皮电位图的影响。

全局地形图描述符

在给定时刻记录的电场全局强度的一个公认描述符是全局场功率(GFP)。全局场功率是平均参考图中所有电极电活动的标准偏差。它被定义为:

其中,ui为u在电极i处的电压,u为地形图u上所有电极的平均电压(平均参考),N为地形图u上的电极数量。头皮电位场具有显著的正负峰,会导致较高的GFP值,而梯度平缓的“平坦”地形图,则显示GFP值较低。

为了比较不受场强影响的两张地形图之间的差异,Lehmann和Skrandies(1980)引入了全局地形图差异(GMD)的计算方法。GMD的公式为:

其中,ui为地形图u在电极i处的电压,vi为地形图v在电极i处的电压,u为地形图u上所有电极的平均电压(平均参考),v为地形图v上所有电极的平均电压,N为电极总数。由于只对地形而不是强度差异感兴趣,因此要比较的两张地形图首先通过给定地形图的每个电极的电压值除以其GFP来进行归一化。当两张地形图相等时,GMD为0,当两张地形图具有相同的地形且极性相反时,GMD最大可达到2。GMD等价于两张地形图电位之间的空间Pearson积矩相关系数(GMD2=2*(1-r))。

如前所述,如果两张图在地形上的差异与其强度无关,这直接表明这两张地形图是由大脑中不同的源产生的。因此,GMD计算是确定被比较的两张地形图是否涉及不同源的第一步。当计算后续两张地形图之间的GMD时,有人注意到GMD与GFP呈负相关:当GFP较低时,GMD较高,反之亦然。这一有趣的观察结果表明,在GFP较高的时段,地形图往往具有稳定的地形,而在GFP较低的时段,地形图的构型会发生变化(图2)。

GMD本身并不是一个统计指标。它只给出一个空间相关性值。然而,GMD可作为一个参数来统计比较组间或实验条件之间的地形图。这是通过基于GMD值进行非参数随机化检验来实现的,称为地形方差分析(tANOVA)。地形方差分析按以下方式进行:(1)将单个被试的地形图以随机方式分配到不同的实验条件或组(即数据的排列);(2)计算排列后组或条件的平均脑电地形图及其之间的GMD;(3)将实际组或条件的GMD值与随机数据分布的GMD值进行比较,以确定实证数据值高于随机分布的GMD值的可能性。多因素方差分析也可以用这种方法进行。

多通道EEG的时空分解

由于信号在时间和空间上高度相关,EEG提供了冗余信息,这对考虑每个电极和每个时间点的统计分析方法带来了挑战。传统的多重检验校正方法不适用于高相关性的信号。全局地形参数,如GFP和GMD,通过对每个时间点用编号表示的无参考地形描述符来减少冗余问题。因此,他们通过只考虑具有最高信噪比的时间点(GFP峰值)或通过平均后续GMD峰值之间的数据来减少时域数据,因为在这两者之间的地形是保持稳定的(图2)。

图2.全局地形图描述符。

时变、多通道EEG数据的冗余性促使研究人员提出了时空分解方法,以找到一系列描述信号的不同成分或模式,并最终找到在实验或临床条件下存在差异的不同成分。传统上,这种分解是在频域进行的,通过对EEG进行频谱分析和计算功率谱,从而假设信号是准稳态的。利用小波分析技术对瞬态振荡进行时域分解。

由于这种分析通常是在单个通道上进行的,所以地形分布通常会被忽略,隐含地假设产生成分的神经源的空间结构保持稳定。对频率滤波的多通道EEG地形图进行简单检查,可以发现事实并非如此(图3):该图显示了alpha滤波后的EEG头皮电位图的地形随时间的变化情况,表明不同神经源在不同的时间点对头皮上的alpha信号有贡献。因此,无论是在时域还是频域,多通道EEG的分解都应考虑电场的时变空间结构。

图3.Alpha-EEG的空间非平稳性。

最常见的方法是使用空间因子分析方法将多通道EEG信号分解为不同的成分,用地形图表示。这些地形图代表了所有记录通道在不同时间上的加权和。最常用的空间分解方法是基于主成分分析(PCA)和独立成分分析(ICA)。PCA使不同因子之间正交。PCA的第一个成分解释了最大可能的数据方差,随后的每个正交成分解释了最大可能的残差方差。PCA已被证明是一种强大的探索性工具,可以提取在不同实验条件下的多通道事件相关电位中的差异成分。

与正交性不同,ICA增强了统计独立性。每个因子应该代表一个时间上独立的成分。与PCA一样,ICA为每个因子生成一个权重系数。ICA已被证明在检测和去除伪影(如眨眼)或由脑独立源产生的伪影(如MRI扫描仪中记录的EEG心电伪影)方面非常有用。ICA也被用于将大脑活动分解为独立的大脑过程。然而,大脑过程的统计独立性假设受到了挑战,因为脑区之间和分布式神经网络内部的交互是大脑组织的主要原则之一。因此,ICA的主要限制是它不能显示动态耦合的成分。

基于空间k均值聚类的方法是一种广泛应用于模式识别应用的方法,用于确定脑电和事件相关电位的空间成分。Pascual-Marqui等人(1995)在改进版的k均值聚类中,建议使用如前所述的GMD参数对具有高度空间相关性的地形图进行聚类,并确定这些聚类中心作为每个聚类的代表性模板图。交叉验证等准则用于确定最佳的聚类数量。

k均值聚类技术不假设地形图的统计独立性或正交性。它以嵌套迭代的方式定义了最佳聚类数量,以最少数量的地形图来最佳地解释数据。有趣的是,当将这些聚类图与数据进行拟合时,无论是在自发脑电还是事件相关电位数据中,一个特定的地形图似乎会在一段时间(大约100ms)内占据主导地位。有人认为,这些稳定的地形周期代表了大规模神经元网络中全局锁相同步活动的状态。在事件相关电位中,这些时期可能代表了信息处理的不同步骤,但在自发性脑电图中,这些“脑电微状态”可能代表了心理状态的基本构建模块,或“思维的原子(atoms of thought)”(图4)。

图4.脑电微状态分段。

许多不同的研究表明,微状态的构成、持续时间、存在和转换概率受到刺激参数、大脑整体状态和意识水平的影响,并会受到不同的神经和精神疾病的干扰。总之,ICA、PCA或k均值聚类的时空分解方法都有其固有的优势和局限性。其共同之处在于,它们试图分离组成多通道头皮记录的不同来源,即分离随时间变化而活跃的不同时间独立的网络。即使这些方法没有直接指定这些激活来自大脑中的位置,但它们也为源定位提供了有用的预处理步骤。

源定位

目前,大多数源定位研究采用分布式源建模方法,根据头皮记录估计全脑的电流密度分布。最常用的算法是LORETA及其衍生算法、FOCUSS、VARETA、LAURA和波束形成算法。

基本上,这一系列技术由一个线性方程组组成,该方程组将系统的已知部分(每个电极上的测量)与未知部分(在整个皮层灰质离散点上的电流密度向量,即“解空间”)联系起来。在每个解点,放置一个电流密度向量(即偶极子)。线性方程组的系数对应于导联场,导联场根据电动力学定律(距离、几何形状和电导率剖面)将颅外测量与源相联系。系数的集合是高度不确定的,因为解点比可测量的记录通道多得多,这被称为逆问题的非唯一性。

在不同的解点上,不同的源结构和方向可以导致相同的头皮电场。因此,必须纳入生理和生物物理学上有意义的约束。这就是不同算法的不同之处。例如,虽然最初引入的最小范数解只最小化了估计逆解的最小二乘误差,但LORETA最小化了二阶空间导数,从而使估计是平滑的。许多不同领域的实验研究表明,这些方法能够以一种可靠的方式对产生头皮记录的皮层源进行定位。通过添加具有适当传导性参数的真实个体头部模型,皮层源的定位精度可达到约15mm。

相关推荐:

EEG源定位

代码分享| EEG数据的等效偶极子源定位

EEG源定位的线性分布逆解

高分辨率EEG:需要多少电极?

自脑电地形图技术开始推广以来,人们一直在问需要多少个电极才能对脑电图进行适当的空间分析,这一问题对于空间域的信号分析是至关重要的。同时,这个问题已在一些研究中得到了解决。该问题主要涉及头皮电位场的最大空间频率问题。与时间序列的分析类似,Nyquist定理也适用于头皮电位图的分析:能够正确分析的最高空间频率取决于信号的采样。如果信号采样不足,(空间)混叠就会发生。这意味着,如果空间采样频率(即电极之间的距离)低于电位场的空间频率,重建的地形图将会失真,导致地形图的错误解读和源定位错误。因此,了解头皮电场的最大空间频率是很重要的,多年来一直被反复讨论。

基于模拟和实验数据的初步研究表明,需要约2-3cm的电极间距,这将导致需要大约100个电极才能覆盖整个头皮。基于空间谱密度估计,Freeman等人(2003)甚至认为电极间距小于1cm。Srinivasan等人(1998)比较了不同电极蒙太奇(19-129个电极)的有效空间分辨率,并得出结论:“32通道阵列能够精确分辨的最小地形特征直径为7cm,大约相当于一个脑叶的大小。”另有一些研究通过计算模拟的单个偶极子电位图,然后利用不同头皮电极数量的源定位技术估计偶极子的位置。这些研究表明,随着电极数量的增加,源定位精度也会逐渐提高,在大约100个电极时达到稳定状态。他们还表明,增加电极数量可以减少深部源的定位误差。

一些实验研究仅使用原始记录电极的子样本来评估电极数量对源定位精度的影响。Michel等人(2004)表明,当46个电极中仅使用19个时,视觉P100成分会被错误地偏侧化。他们还表明,头部的不完全覆盖可能导致估计源的错位。Luu等人(2001)研究了急性局灶性缺血性卒中患者。最初使用128个电极进行记录,然后下采样至64、32和19个通道。通过直观地比较脑电地形图和放射学图像,作者得出结论,需要超过64个电极来避免受影响区域的错误定位。Lantz等(2003)用123个电极记录了14例局灶性癫痫患者的癫痫棘波,然后下采样至63和31个电极。然后应用不同电极阵列对单个棘波进行源定位,并将定位最大值与使患者无癫痫发作的切除区域进行比较。从31个电极变化到123个电极时,源定位精度有了系统性的提高。Sohrabpour等人(2015)在儿童癫痫患者中使用了相同的方法,并通过比较源定位与颅内记录定义的癫痫发作区来评估定位误差。他们还发现,通过将电极的数量从32个增加到64个和128个时,定位精度得到了系统性的提高。

Brodbeck等(2011)发表了关于使用高分辨率脑电图定位刺激区最全面的研究。在对152名手术患者进行的前瞻性研究中,他们评估了发作间期棘波的脑电源成像的临床效果。当使用大量电极(128 ~ 256通道)记录EEG时,以及在源重建中使用单个MRI作为头部模型时,显示出脑电源成像的敏感性为84%,特异性为88%。当脑电源成像仅使用32通道进行记录时,这些值急剧下降,当使用模板头部模型时,这些值甚至更低。

这里描述的大多数模拟和实验研究估计,大约需要100个电极来对电场进行正确的空间采样。然而,这些研究中的大多数假设颅骨与头皮的电阻比为80∶1。最近的一些研究表明,颅骨的电阻要低得多,在20∶1的范围内。颅骨电阻对脑电信号的空间分辨率有着重要影响,因为高电阻会使信号变得模糊。Ryynanen等人(2004)系统地研究了在降低阻抗值时,增加电极数量对空间分辨率的益处。他们首先表明,通常使用的80∶1的高电阻比确实导致了有限的空间分辨率,大约64个电极可以正确捕获。然后,当降低颅骨电阻时,在64导基础上增加电极数量可以提高空间分辨率。

颅骨的电阻取决于颅骨的厚度。研究表明,与成人相比,婴儿的颅骨厚度约低7-8倍,导致颅骨和大脑之间的比例约为14∶1。Ryynanen等人(2006)和Grieve等人(2004)表明,在这个比例下,256导的空间分辨率仍然比128导的空间分辨率高。因此,与婴儿头部较小需要较少电极的直观假设相反,婴儿颅骨较薄需要比成人更多的电极,以减少空间采样误差,尤其是在新生儿中。

由于脑电图的空间频率高于先前的假设,因此需要重新考虑负责产生可测量脑电信号的皮层区域的大小。活动神经元的密度和它们之间的关联程度是重要的影响因素。如果EEG可以捕捉到局灶性皮层活动,那么低密度电极阵列可能会漏检这些活动。Zelmann等人(2014)的一项研究很好地说明了这一事实。通过模拟和同时进行头皮和颅内记录,研究表明尽管高频振荡(HFOs;频率范围80-500Hz)的振幅很低,并且具有非常集中的发生器,但可以在头皮上记录到高频振荡,但是如果没有在这些发生器上方放置电极,那么它们很容易被遗漏(图5)。

图5.利用高分辨率脑电图检测高频振荡(HFOs)。

除了需要足够的电极来正确捕获电场的空间频率,并避免空间混叠和漏掉焦点源之外,电场必须尽可能完整地采样(图6)。大脑中的神经元活动均匀地向头皮的各个方向扩散,从而产生整个头部的正负电位。根据等效偶极子的位置和方向,电位场的最大值和最小值可以位于或超出传统电极阵列的边界,例如,在乳突或脸颊上。如果这些区域没有被捕捉到,就无法估计大脑中的生成器。电场的两个极端都应该位于阵列内,以正确地恢复电场的梯度和电流密度。这一事实对于切向源特别重要,因为产生电场的最大值和最小值并不在源的上方。图7以不同的例子展示了不良采样对源估计的影响,包括颞叶内侧癫痫灶的定位:当在源定位重建中不考虑颞叶下部的电极时,则病灶被错误地定位在岛叶水平,而不是颞下叶。事实上,如Sperli等人(2006)所示,传统的10-20系统不包括颞下电极,因此内侧颞源会被系统性地错误定位。

图6.空间采样和空间覆盖示意图。

图7.低分辨率脑电图错误源定位的示例。

结论

本文讨论了高分辨率EEG分析的历史和发展,并阐明了使用高密度电极阵列可以获得的额外信息,以及在低通道电极数量上进行电场空间分析的缺点。很明显,头皮电场的空间频率比最初假设的要高得多,对这些频率的错误采样和对头皮表面的覆盖不足会导致错误的地形图、错误的定位,以及无法检测仅由少数几个电极观察到的局部事件。因此,要对头皮电位场进行充分采样以进行地形分析,需要大量的电极。然而,除了使用高分辨率脑电进行源成像外,许多基于电场空间特征的脑电分析新方法已被开发并成功应用于临床和实验研究。脑电和诱发电位的统计地形分析、时空分解,以及头皮或源水平的连接分析都是依赖于多通道阵列测量信号的方法。它们在理解人脑大规模网络动力学以及作为神经精神疾病标志物方面的价值已日益得到证实。

参考文献:

Michel CM. High-resolution EEG. Handb Clin Neurol. 2019;160:185-201. doi: 10.1016/B978-0-444-64032-1.00012-6. PMID: 31277847.

Michel CM, Murray MM, Lantz G et al. (2004). EEG source imaging. Clin Neurophysiol 115: 2195–2222.

Michel CM, Koenig T (2017). EEG microstates as a tool to study temporal dynamics of whole-brain neuronal networks. Neuroimage 180: 577–593.

Sohrabpour A, Lu Y, Kankirawatana P et al. (2015). Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol 126: 472–480.

Zelmann R, Lina JM, Schulze-Bonhage A et al. (2014). Scalp EEG is not a blur: it can see high frequency oscillations although their generators are small. Brain Topogr 27: 683–704.

Lantz G, Grave De Peralta R, Spinelli L et al. (2003). Epileptic source localization with high density EEG: how many electrodes are needed. Clin Neurophysiol 114: 63–69.

Brodbeck V, Spinelli L, Lascano AM et al. (2011). Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134: 2887–2897.

Ryynanen OR, Hyttinen JA, Laarne PH et al. (2004). Effect of electrode density and measurement noise on the spatial resolution of cortical potential distribution. IEEE Trans Biomed Eng 51: 1547–1554.

Ryynanen OR, Hyttinen JA, Malmivuo JA (2006). Effect of measurement noise and electrode density on the spatial resolution of cortical potential distribution with different resistivity values for the skull. IEEE Trans Biomed Eng 53: 1851–1858.

Grieve PG, Emerson RG, Isler JR et al. (2004). Quantitative analysis of spatial sampling error in the infant and adult electroencephalogram. Neuroimage 21: 1260–1274.

Hämäläinen MS, Hari R, Ilmoniemi RJ et al. (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65: 413–497.

Lehmann D, Skrandies W (1980). Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48: 609–621.

Luu P, Tucker DM, Englander R et al. (2001). Localizing acute stroke-related EEG changes: assessing the effects of spatial undersampling. J Clin Neurophysiol 18: 302–317.

Pascual-Marqui RD, Michel CM, Lehmann D (1995). Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42: 658–665.

Freeman WJ, Holmes MD, Burke BC et al. (2003). Spatial spectra of scalp EEG and EMG from awake humans. Clin Neurophysiol 114: 1053–1068.

Sperli F, Spinelli L, Seeck M et al. (2006). EEG source imaging in paediatric epilepsy surgery: a new perspective in presurgical workup. Epilepsia 47: 981–990.

Srinivasan R, Tucker DM, Murias M (1998). Estimating the spatial Nyquist of the human EEG. Behav Res Methods Instrum Comput 30: 8–19.

茗创科技
关注 关注
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MEG/EEG数据分析的程序
07-29
专门用于分析脑记录:脑电描记图、脑电图、近红外光谱、心电图、深度电极和动物电生理学...我们还强调数据分析的实际方面(例如,使用批处理分析的脚本和分析管道的直观设计),以提高MEG/EEG研究的可重复性和生产力。
利用python-mne进行EEG数据分析(ICA拟合)
09-25
利用python-mne进行EEG数据分析——ICA拟合和去除眼电部分,可进行多个被试循环处理,jupyter notebook打开的文件。
脑电信号分析python代码(python_eeg_analysis).zip
09-23
整体来看,这个压缩包提供的资源是一个完整的EEG分析工作流,涵盖了从数据采集到结果解释的多个环节,对于学习和研究脑电分析的用户来说极具价值。通过深入理解和应用这些代码,开发者可以提升自己在生物信号处理...
EEG脑电信号分析与特征提取PPT讲解稿
04-06
脑电信号是由脑神经活动产生并且始终存在于中枢神经系统的自发性电位活动,是一种重要的生物电信号。 脑电信号非常微弱。主要有以下几个特点: 1)随机性及非平稳性相当强。 2)脑电信号具有非线性。...
eeg脑网络分析
03-02
"eeg脑网络分析"是将EEG数据转化为网络模型,以便于理解和研究大脑功能连接性的复杂过程。 首先,我们来理解一下“脑网络”的概念。脑网络是由大脑中的不同区域或节点(灰质区域)以及它们之间的连接(边或路径)...
智慧旅游景区解决方案PPT(50页).pptx
09-21
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
智慧旅游实景三维智慧景区建设方案PPT(70页).pptx
09-21
智慧旅游解决方案利用云计算、物联网和移动互联网技术,通过便携终端设备,实现对旅游资源、经济、活动和旅游者信息的智能感知和发布。这种技术的应用旨在提升游客在旅游各个环节的体验,使他们能够轻松获取信息、规划行程、预订票务和安排食宿。智慧旅游平台为旅游管理部门、企业和游客提供服务,包括政策发布、行政管理、景区安全、游客流量统计分析、投诉反馈等。此外,平台还提供广告促销、库存信息、景点介绍、电子门票、社交互动等功能。 智慧旅游的建设规划得到了国家政策的支持,如《国家中长期科技发展规划纲要》和国务院的《关于加快发展旅游业的意见》,这些政策强调了旅游信息服务平台的建设和信息化服务的重要性。随着技术的成熟和政策环境的优化,智慧旅游的时机已经到来。 智慧旅游平台采用SaaS、PaaS和IaaS等云服务模式,提供简化的软件开发、测试和部署环境,实现资源的按需配置和快速部署。这些服务模式支持旅游企业、消费者和管理部门开发高性能、高可扩展的应用服务。平台还整合了旅游信息资源,提供了丰富的旅游产品创意平台和统一的旅游综合信息库。 智慧旅游融合应用面向游客和景区景点主管机构,提供无线城市门户、智能导游、智能门票及优惠券、景区综合安防、车辆及停车场管理等服务。这些应用通过物联网和云计算技术,实现了旅游服务的智能化、个性化和协同化,提高了旅游服务的自由度和信息共享的动态性。 智慧旅游的发展标志着旅游信息化建设的智能化和应用多样化趋势,多种技术和应用交叉渗透至旅游行业的各个方面,预示着全面的智慧旅游时代已经到来。智慧旅游不仅提升了游客的旅游体验,也为旅游管理和服务提供了高效的技术支持。
基于深度学习实现的半监督学习例子.zip
09-21
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
关于APx测试耳机音频的参数设置及步骤 关于APx测试耳机音频的参数设置及步骤
09-21
关于APx测试耳机音频的参数设置及步骤 关于APx测试耳机音频的参数设置及步骤
jQuery背景可滑动的导航菜单代码,鼠标经过导航时导航背景可滑动,兼容主流浏览器
09-21
jQuery背景可滑动的导航菜单代码,鼠标经过导航时导航背景可滑动,兼容主流浏览器 使用方法: 1、引入reset.css、index.css、jquery-1.7.2.min.js库文件,及jquery.movebg.js插件 2、在文件中加入<!-- 代码 开始 --><!-- 代码 结束 -->区域代码 3、移动的滑动可根据需要自由修改外观
Matlab实验指导书.doc
09-21
Matlab实验指导书.doc
S7-1200 计数器介绍
09-21
PLC
010编辑器,好用的二进制编辑器
09-21
010编辑器,好用的二进制编辑器
制作表彰奖状-使用电子表格批处理数据.pptx
09-21
信息技术教学ppt
智能翻译官cpc-bd07-20752777288491826.exe
最新发布
09-21
‌智能翻译官获得了广泛的好评‌,这主要得益于其高效、准确以及用户友好的特性。以下是一些具体的评价细节: ‌用户界面和操作体验‌:智能翻译官提供了一个直观且易于使用的界面,使得用户能够轻松地进行翻译操作。无论是文字输入、拍照翻译还是语音输入,智能翻译官都能提供流畅的使用体验,大大提高了用户的工作和沟通效率‌12。 ‌翻译准确性和速度‌:智能翻译官在翻译准确性和速度方面表现出色。它支持多种语言的翻译,包括但不限于英语、日语、韩语等,并且能够在短时间内完成翻译,确保了沟通的实时性和有效性‌23。 ‌功能多样性‌:除了基本的翻译功能外,智能翻译官还提供了同声传译、录音文件保存、实景AR翻译等多种功能。这些功能使得智能翻译官成为开会、旅行等多种场景下的理想选择‌2。 ‌用户反馈‌:从用户反馈来看,智能翻译官不仅受到了普通用户的欢迎,也得到了专业人士的认可。无论是学生、商务人士还是旅游者,都对其表示满意,认为它极大地便利了他们的学习和生活‌12。 综上所述,智能翻译官以其高效、准确、用户友好的特点,赢得了广泛的好评和推荐。无论是对于需要频繁进行语言沟通的用户,还是对于需要学习不同语言的学
基于深度学习的自动相册分类系统.zip
09-21
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
【目标识别】基于matlab红外光图像小目标识别【含Matlab源码 7571期】.zip
09-21
CSDN海神之光上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
基于深度学习的肺炎分类研究.zip
09-21
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
Python搭建基于numpy的卷积神经网络来进行cifar-10分类的深度学习系统
09-21
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
eeg cca分析代码
02-05
EEG-CCA脑电图正交相关分析)是一种用于分析脑电图(EEG)数据的方法。这种方法通过计算EEG信号与其他相关信号之间的相似度,来揭示EEG信号中的隐藏关联性。 在实施EEG-CCA分析时,首先需要准备EEG信号和相关信号...
写文章

热门文章

  • 时域、频域、时频特征提取技术 21469
  • 脑电数据预处理看这篇就够了 21428
  • eeglab脑电数据预处理:step by step 18821
  • 干货分享|E-prime 3入门手册 14895
  • ERPLAB脑电数据分析教程 14689

分类专栏

  • fMRI 10篇
  • 脑科学 131篇
  • 脑电 30篇
  • EEG 46篇
  • 婴儿 2篇
  • 神经网络 2篇
  • 认知神经科学 80篇
  • 数据分析 19篇
  • 脑电数据分析 32篇
  • FNIRS 1篇
  • 元分析 5篇
  • 近红外 19篇
  • 核磁 20篇
  • 近红外超扫描 6篇
  • 脑成像 2篇
  • 机器学习 4篇
  • 感觉 1篇
  • 经颅直流电刺激 4篇
  • 神经生理学 3篇
  • tDCS 1篇
  • 经颅磁刺激 1篇
  • eeglab 9篇
  • E-prime 1篇
  • 音乐学习 1篇
  • java
  • 数据结构 5篇

最新评论

  • FEAD:fNIRS-EEG情感数据库(视频刺激)

    冬,728: 您好,我想请问一下您有文章中提及的数据集的下载渠道吗?

  • 脑科学研究者的案头书(含下载资源)

    2305_79502144: 脑科学

  • 脑电信号特征提取方法与应用

    小王毕业啦: 博主的这篇文章真是让我受益匪浅,对脑电信号特征提取方法与应用有了更深入的了解。文章内容详实,且通俗易懂,让我这个初学者也能够轻松理解。看来博主对这个领域的研究和实践经验非常丰富,期待他未来能够分享更多深入的文章。感谢博主的用心分享,希望能够和博主保持交流,共同进步。

  • 核磁干货 | RESTplus计算核磁静息态指标

    m0_73484395: 我现在也遇到这个问题,兄弟解决了吗

  • 核磁干货 | RESTplus计算核磁静息态指标

    2401_82608585: dartel配准最后一步生成模板后配准到空间报错,请问怎么看

最新文章

  • 长时间认知任务中的大脑补偿机制:fNIRS和眼动追踪研究
  • FEAD:fNIRS-EEG情感数据库(视频刺激)
  • 利他决策的神经机制:脑电功能连接网络分析
2024
09月 7篇
08月 9篇
07月 13篇
06月 19篇
05月 10篇
03月 3篇
02月 3篇
2023年114篇
2022年87篇
2021年103篇

目录

目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

天下网标王绍兴越城网站优化普陀区专业网站优化方案定制青浦区谷歌网站优化定制方案南京网站推广优化品牌哪家好海阳个性化网站优化个人分析网站优化网站打开慢优化郑州整站网站优化系统如何优化外贸网站网站seo优化排名需要多久郑州正规的婚纱摄影网站优化金华网站推广优化公司遂川网站优化推广河北省邯郸市网站关键词优化佛山按天网站优化运营无锡营销网站优化是什么淄博网站综合优化广东当地的免费网站优化罗湖国内网站优化哪里好成都网站怎么优化优质武清网站优化热线电话莱芜网站关键词优化公司高碑店网站基础优化网站优化设计岗位职责江门企业网站关键词优化技巧青岛网站优化电池谷歌网站优化有用吗吉林网站优化电话医疗优化网站 百度网站优化推广策划香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声卫健委通报少年有偿捐血浆16次猝死汪小菲曝离婚始末何赛飞追着代拍打雅江山火三名扑火人员牺牲系谣言男子被猫抓伤后确诊“猫抓病”周杰伦一审败诉网易中国拥有亿元资产的家庭达13.3万户315晚会后胖东来又人满为患了高校汽车撞人致3死16伤 司机系学生张家界的山上“长”满了韩国人?张立群任西安交通大学校长手机成瘾是影响睡眠质量重要因素网友洛杉矶偶遇贾玲“重生之我在北大当嫡校长”单亲妈妈陷入热恋 14岁儿子报警倪萍分享减重40斤方法杨倩无缘巴黎奥运考生莫言也上北大硕士复试名单了许家印被限制高消费奥巴马现身唐宁街 黑色着装引猜测专访95后高颜值猪保姆男孩8年未见母亲被告知被遗忘七年后宇文玥被薅头发捞上岸郑州一火锅店爆改成麻辣烫店西双版纳热带植物园回应蜉蝣大爆发沉迷短剧的人就像掉进了杀猪盘当地回应沈阳致3死车祸车主疑毒驾开除党籍5年后 原水城县长再被查凯特王妃现身!外出购物视频曝光初中生遭15人围殴自卫刺伤3人判无罪事业单位女子向同事水杯投不明物质男子被流浪猫绊倒 投喂者赔24万外国人感慨凌晨的中国很安全路边卖淀粉肠阿姨主动出示声明书胖东来员工每周单休无小长假王树国卸任西安交大校长 师生送别小米汽车超级工厂正式揭幕黑马情侣提车了妈妈回应孩子在校撞护栏坠楼校方回应护栏损坏小学生课间坠楼房客欠租失踪 房东直发愁专家建议不必谈骨泥色变老人退休金被冒领16年 金额超20万西藏招商引资投资者子女可当地高考特朗普无法缴纳4.54亿美元罚金浙江一高校内汽车冲撞行人 多人受伤

天下网标王 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化