搜索

x
中国物理学会期刊
Chinese Physics Letters Chinese Physics B 物理学报 物理 中国物理学会期刊网
高级检索
  • 首页
  • 亮点文章
  • 期刊在线
    1. 优先出版
    2. 预出版
    3. 当期目录
    4. 过刊浏览
    5. 下载排行
    6. 高被引论文
    7. 高级检索
  • 专题
  • 作者中心
    1. 投稿须知
    2. 投稿查稿
    3. 版权协议
    4. 相关资料下载
    5. 论文关联数据汇交说明
    6. 稿件处理流程
    7. 常见问题
    8. 授权申请
    9. 特别约稿和绿色通道
  • 审稿中心
    1. 审稿政策
    2. 审稿常见问题
    3. 专家登录
    4. 编委登录
    5. 主编登录
    6. 编辑登录
  • 期刊简介
  • 联系我们
  • ENGLISH

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti3Al合金凝固过程晶核形成及演变过程的模拟研究

李昌 ,  侯兆阳 ,  牛媛 ,  高全华 ,  王真 ,  王晋国 ,  邹鹏飞

downloadPDF
引用本文:
Citation:

Ti3Al合金凝固过程晶核形成及演变过程的模拟研究

李昌, 侯兆阳, 牛媛, 高全华, 王真, 王晋国, 邹鹏飞

Simulation of nucleation and evolution process of nuclei during solidification of Ti3Al alloy

Li Chang, Hou Zhao-Yang, Niu Yuan, Gao Quan-Hua, Wang Zhen, Wang Jin-Guo, Zou Peng-Fei
  • 摘要
  • 图表
  • 参考文献(27)
  • 相关文章
PDF
HTML
导出引用
  • 摘要

    采用分子动力学方法对Ti3Al合金的形核机理进行了模拟研究, 采用团簇类型指数法(CTIM), 对凝固过程不同尺度的原子团簇结构进行了识别和表征, 深入研究了临界晶核的形成和长大过程. 结果表明, 凝固过程体系包含了数万种不同类型的原子团簇结构, 但其中22种团簇结构类型对结晶形核过程起关键性作用. 在晶核的形成和长大过程, 类二十面体(ICO)原子团簇、类BCC原子团簇和缺陷FCC及缺陷HCP原子团簇在3个特征温度点T1 (1110 K), T2 (1085 K)和T3 (1010 K)时达到数量上的饱和, 并根据数量和空间分布随温度的变化, 得到了它们在形核和长大过程相互竞争的关系. 跟踪平行孪生晶粒形成和长大的过程发现, 临界晶核是由FCC原子构成的单相结构, 并未观察到亚稳BCC相优先形核的过程; 平行孪生结构是由FCC单相晶核在沿密排面逐层生长过程中形成的. 结果还表明, CTIM相比于其他微观结构表示方法, 能更为准确地揭示凝固过程微观结构的转变特征.
      关键词:
    • TiAl合金 / 
    • 形核机理 / 
    • 分子动力学模拟 / 
    • 原子团簇 

    Abstract

    The nucleation mechanism of Ti3Al alloy is simulated by the molecular dynamics method in this work. The atomic clusters on different spatial scales are identified in the solidification process by the cluster-type index method (CTIM), and the formation process and the growth process of critical nucleus are studied in depth. It is found that the solidification system contains ten thousands of different types of atomic cluster structures, but only 22 types play a key role in the nucleation process. In the nucleation and growth process of nuclei, the ICO-like cluster, the BCC-like cluster, and the defective FCC cluster and the defective HCP cluster respectively reach their saturation points at the characteristic temperature T1 (1110 K), T2 (1085 K) and T3 (1010 K). And the competition processes of these clusters are revealed according to the changes of their number and spatial distribution with temperature. By tracing the nucleation and growth process of the grain with parallel twin, it is found that the critical crystal nucleus is composed of single-phase FCC structures, and the preferent nucleation of metastable bcc structure is not observed. The twinned structure is formed by the layer-by-layer growth along the close-packed plane. It is also found that the CTIM is more accurate than other methods in revealing the microstructural characteristics during the solidification.
      Keywords:
    • TiAl alloy / 
    • nucleation mechanism / 
    • molecular dynamics simulation / 
    • atomic cluster 

    作者及机构信息

      通信作者: 侯兆阳, zhaoyanghou@163.com
    • 基金项目: 国家自然科学基金(批准号: 50831003)资助的课题.

    Authors and contacts

      Corresponding author: Hou Zhao-Yang, zhaoyanghou@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50831003).

    文章全文 : translate this paragraph

    参考文献

    [1]

    Mayer S, Erdely P, Fischer F D, Holec D, Kastenhuber M, Klein T, Clemens H 2017 Adv. Eng. Mater. 19 1600735 Google Scholar

    [2]

    Chen G, Peng Y, Zheng G, Qi Z, Wand M, Yu H, Dong C, Liu C T 2016 Nat. Mater. 15 876 Google Scholar

    [3]

    杨锐 2015 金属学报 51 129 Google Scholar

    Yang R. 2015 Acta Metall. Sin. 51 129 Google Scholar

    [4]

    Hao Y, Liu J, Li J, Liu X, Feng X 2017 Mater. Sci. Eng., A 705 210 Google Scholar

    [5]

    Edwards J E T, Gioacchino F D, Clegg W J 2019 Int. J. Plast. 118 291 Google Scholar

    [6]

    Christoph K, Christian L 2015 J. Alloys. Compd. 637 242 Google Scholar

    [7]

    Ilyas M U, Kabir M R 2021 Intermetallics 132 107129 Google Scholar

    [8]

    Pei Q X, Lu C, Fu M W 2004 J. Phys. Condens. Matter 16 4203 Google Scholar

    [9]

    Xie Z C, Gao T H, Guo X T, Qin X M, Xie Q 2014 J. Non-Cryst. Solids 394–395 16

    [10]

    Xie Z C, Gao T H, Guo X T, Xie Q 2014 J. Non-Cryst. Solids 406 95 Google Scholar

    [11]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2016 RSC Adv. 6 54763 Google Scholar

    [12]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2017 RSC Adv. 7 48315 Google Scholar

    [13]

    刘永利, 赵星, 张宗宁, 张林, 王绍青, 叶恒强 2009 物理学报 58 246 Google Scholar

    Liu Y L, Zhao X, Zhang Z N, Zhang L, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 246 Google Scholar

    [14]

    宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104 Google Scholar

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104 Google Scholar

    [15]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950 Google Scholar

    [16]

    Finney J L 1970 Proc. R. Soc. London, Ser. A 319 479 Google Scholar

    [17]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys. Condens. Matter 19 751 Google Scholar

    [18]

    Hou Z Y, Li C, Liu L X, Gao Q H, Dong K J 2021 Comput. Mater. Sci. 197 110639 Google Scholar

    [19]

    大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101 Google Scholar

    Da D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 Google Scholar

    [20]

    Plimpton S J 1995 J. Comput. Phys. 117 1 Google Scholar

    [21]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 366 Google Scholar

    [22]

    Fu R, Rui Z, Dong Y, Luo D, Yan C 2021 Comput. Mater. Sci. 194 110428 Google Scholar

    [23]

    Bizot Q, Politano O, Nepapushev A A, Vadchenko S G, Baras F 2020 J. Appl. Phys. 127 145304 Google Scholar

    [24]

    Wang J S, Horsfield A, Schwingenschlögl U, Lee P D 2010 Phys. Rev. B 82 184203 Google Scholar

    [25]

    Gasser U, Weeks ER, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258 Google Scholar

    [26]

    Wang Z, Wang F, Peng Y, Zheng Z, Han Y 2012 Science 338 87 Google Scholar

    [27]

    E J C, Wang L, Cai Y, Wu H A, Luo S N 2015 J. Chem. Phys. 142 064704 Google Scholar

    施引文献

  • 图 1  公共近邻分析方法中不同H-A键对拓扑结构示意图. 根对原子和其公共近邻原子分别用红色和绿色表示

    Fig. 1.  Schematic diagram of topological structure of H-A bond types in common neighbour analysis. The root-pair atoms and their common neighbours are represented in red and green colours, respectively.

    下载: 全尺寸图片 幻灯片

    图 2  CTIM表征基本原子团簇结构方法示意图 (a) FCC基本原子团簇(12, 12/1421); (b)缺陷FCC基本原子团簇(12, 2/1311 1/1411 9/1421)

    Fig. 2.  Schematic diagram of topological structure of basic atomic cluster characterized by CTIM: (a) FCC basic atomic cluster (12, 12/1421); (b) defective FCC basic atomic cluster (12, 2/1311, 1/1411, 9/1421).

    下载: 全尺寸图片 幻灯片

    图 3  CTIM表征的较大尺寸原子团簇结构 (a)由1个HCP基本原子团簇(12, 6/1421 6/1422)和1个FCC基本原子团簇(12, 12/1421)构成的包含20个原子的团簇结构; (b)由6个FCC基本原子团簇(12, 12/1421)构成的包含38个原子的纳米级团簇结构. 灰色原子为团簇的中心原子

    Fig. 3.  Topological structure of larger atomic clusters characterized by CTIM: (a) Cluster with 220 atoms consisting of one HCP basic atomic cluster (12, 6/1421, 6/1422) and one FCC basic atomic cluster (12, 12/1421); (b) nano-cluster with 38 atoms consisting of six FCC basic atomic clusters (12, 12/1421). The gray atoms are central atoms of basic atomic clusters.

    下载: 全尺寸图片 幻灯片

    图 4  Ti3Al合金不同冷速凝固过程平均原子能量随温度的变化曲线

    Fig. 4.  Changes of average energy per atom with temperature during the solidification of Ti3Al alloy under different cooling rates.

    下载: 全尺寸图片 幻灯片

    图 5  不同冷却速率下Ti3Al合金的凝固结构(273 K) (a) 2 K/ps; (b) 1 K/ps; (c) 0.5 K/ps; (d) 0.01 K/ps. 其中绿色、红色和蓝色小球分别代表FCC, HCP和BCC晶态结构原子; 其他类型结构原子用灰色小球表示

    Fig. 5.  Microstructures of solidification solids (273 K) under different cooling rates: (a) 2 K/ps; (b) 1 K/ps; (c) 0.5 K/ps; (d) 0.01 K/ps. The crystal atoms with FCC, HCP and BCC structures are shown in green, red and blue, other atoms are shown in gray.

    下载: 全尺寸图片 幻灯片

    图 6  Ti3Al合金凝固过程双体分布函数随温度的演变过程

    Fig. 6.  Evolution of pair distribution function with temperature during the solidification process of Ti3Al alloy.

    下载: 全尺寸图片 幻灯片

    图 7  Ti3Al合金结晶形核过程体系中基本原子团簇类型的总数量和其中22种主要基本原子团簇所涉及原子数目的比率随温度的变化

    Fig. 7.  Changes of the total number of basic atomic clusters and the ratio of involved atoms in the 22 major basic atomic clusters during the nucleation process of Ti3Al alloy.

    下载: 全尺寸图片 幻灯片

    图 8  Ti3Al合金凝固过程体系内22种主要基本原子团簇的数目随温度的变化 (a1)类FCC基本原子团簇; (a2)类HCP基本原子团簇; (a3)类BCC基本原子团簇; (a4)类ICO基本原子团簇. 为了清晰起见, (b1)−(b4)分别给出了图(a1)−(a4)在(1110−814 K)温度区间的局部图. 类ICO、类BCC和缺陷FCC、缺陷HCP基本原子团簇分别在温度T1 = 1110 K, T2 = 1085 K和T3 = 1010 K达到饱和

    Fig. 8.  Relationship of the number of 22 major basic atomic clusters with temperature during the solidification process of Ti3Al alloy: (a1) FCC-like basic atomic cluster; (a2) HCP-like basic atomic cluster; (a3) BCC-like basic atomic cluster; (a4) ICO-like basic atomic cluster. For clarity, (b1)−(b4) show the enlarged views of (a1)−(a4) in the temperature range (1110−814 K), respectively. The numbers of ICO-like, BCC-like and defective FCC, defective HCP basic atomic clusters reach saturation point at T1 = 1110 K, T2 = 1085 K and T3 = 1010 K.

    下载: 全尺寸图片 幻灯片

    图 9  Ti3Al合金凝固过程中类FCC、类HCP、类BCC和类ICO原子结构空间分布的演化过程 (a) 2073 K; (b) 1110 K; (c) 1085 K; (d) 1010 K; (e) 273 K. 其中, 绿色、红色、蓝色和黄色小球分别代表类FCC、类HCP、类BCC和类ICO原子. 其中G1和G2分别为选定的两个平行孪生晶粒和五重孪生晶粒.

    Fig. 9.  Evolution of spatial distribution of FCC-like, HCP-like, BCC-like and ICO-like atoms during the solidification process of Ti3Al alloy: (a) 2073 K; (b) 1110 K; (c) 1085 K; (d) 1010 K; (e) 273 K. The FCC-like, HCP-like, BCC-like and ICO-like atoms are shown in green, red, blue and yellow color, respectively. The parallel and fivefold twin grains are labelled in G1 and G2, respectively.

    下载: 全尺寸图片 幻灯片

    图 10  图9(e)中标记为G1的平行孪生晶粒的形成过程 (a) 团簇遗传率和尺寸(包含的中心原子数)与温度的变化关系; (b) 原子团簇结构演变过程. 其中绿色和红色小球分表代表类FCC和类HCP原子

    Fig. 10.  Formation process of parallel twin grains labeled G1 in Fig. 9(e): (a) Relationship of heritability and size (number of central atoms) of tracing clusters with temperature; (b) evolution process of the structure of atomic clusters. The FCC-like and HCP-like atoms are shown in green and red color, respectively.

    下载: 全尺寸图片 幻灯片

    图 11  图10(b)中临界晶核形成过程不同局域结构的竞争过程 (a)不同结构类型原子数目占比的变化; (b)不同结构原子的空间分布. 类FCC、类HCP、类BCC、类ICO和无序结构(其他)原子分别用绿色、红色、橘黄色和白色表示

    Fig. 11.  Competition process of different local structures in the formation process critical nucleus shown in Fig. 10(b): (a) Change of the proportion of the atoms with different local structures; (b) spatial distribution of the atoms with different local structures. The FCC-like, HCP-like, BCC-like and ICO-like atoms are shown in green, red, blue and yellow color, respectively. Others with disordered structure are shown in white color.

    下载: 全尺寸图片 幻灯片

    天下网标王沈阳网站制作优化长春泰安网站优化公司地址高邑网站优化公司长宁区公司官方网站优化哪家好沈河区网站建设优化价格郑州网站优化如何收费营口网站优化联系方式南宁优化网站排襄阳关键词网站优化开封百度网站优化公司包头优化网站建设江北区优化网站徐州网站优化哪家专业优化网站公司外包行业供求信息网站怎么优化大兴网站快速优化兰州网站优化公司电话广水网站优化公司西安企业网站搜索优化技巧黄岛区网站seo优化排名站长上海网站搜索优化优化排名前十的网站seo网站优化哪家好营销型网站优化哪家好收费网站优化软件优化网站搜索长沙优化网站建设优化网站推广哪个比较好青山网站优化优化网站收费标准香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声卫健委通报少年有偿捐血浆16次猝死汪小菲曝离婚始末何赛飞追着代拍打雅江山火三名扑火人员牺牲系谣言男子被猫抓伤后确诊“猫抓病”周杰伦一审败诉网易中国拥有亿元资产的家庭达13.3万户315晚会后胖东来又人满为患了高校汽车撞人致3死16伤 司机系学生张家界的山上“长”满了韩国人?张立群任西安交通大学校长手机成瘾是影响睡眠质量重要因素网友洛杉矶偶遇贾玲“重生之我在北大当嫡校长”单亲妈妈陷入热恋 14岁儿子报警倪萍分享减重40斤方法杨倩无缘巴黎奥运考生莫言也上北大硕士复试名单了许家印被限制高消费奥巴马现身唐宁街 黑色着装引猜测专访95后高颜值猪保姆男孩8年未见母亲被告知被遗忘七年后宇文玥被薅头发捞上岸郑州一火锅店爆改成麻辣烫店西双版纳热带植物园回应蜉蝣大爆发沉迷短剧的人就像掉进了杀猪盘当地回应沈阳致3死车祸车主疑毒驾开除党籍5年后 原水城县长再被查凯特王妃现身!外出购物视频曝光初中生遭15人围殴自卫刺伤3人判无罪事业单位女子向同事水杯投不明物质男子被流浪猫绊倒 投喂者赔24万外国人感慨凌晨的中国很安全路边卖淀粉肠阿姨主动出示声明书胖东来员工每周单休无小长假王树国卸任西安交大校长 师生送别小米汽车超级工厂正式揭幕黑马情侣提车了妈妈回应孩子在校撞护栏坠楼校方回应护栏损坏小学生课间坠楼房客欠租失踪 房东直发愁专家建议不必谈骨泥色变老人退休金被冒领16年 金额超20万西藏招商引资投资者子女可当地高考特朗普无法缴纳4.54亿美元罚金浙江一高校内汽车冲撞行人 多人受伤

    天下网标王 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化

  • [1]

    Mayer S, Erdely P, Fischer F D, Holec D, Kastenhuber M, Klein T, Clemens H 2017 Adv. Eng. Mater. 19 1600735 Google Scholar

    [2]

    Chen G, Peng Y, Zheng G, Qi Z, Wand M, Yu H, Dong C, Liu C T 2016 Nat. Mater. 15 876 Google Scholar

    [3]

    杨锐 2015 金属学报 51 129 Google Scholar

    Yang R. 2015 Acta Metall. Sin. 51 129 Google Scholar

    [4]

    Hao Y, Liu J, Li J, Liu X, Feng X 2017 Mater. Sci. Eng., A 705 210 Google Scholar

    [5]

    Edwards J E T, Gioacchino F D, Clegg W J 2019 Int. J. Plast. 118 291 Google Scholar

    [6]

    Christoph K, Christian L 2015 J. Alloys. Compd. 637 242 Google Scholar

    [7]

    Ilyas M U, Kabir M R 2021 Intermetallics 132 107129 Google Scholar

    [8]

    Pei Q X, Lu C, Fu M W 2004 J. Phys. Condens. Matter 16 4203 Google Scholar

    [9]

    Xie Z C, Gao T H, Guo X T, Qin X M, Xie Q 2014 J. Non-Cryst. Solids 394–395 16

    [10]

    Xie Z C, Gao T H, Guo X T, Xie Q 2014 J. Non-Cryst. Solids 406 95 Google Scholar

    [11]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2016 RSC Adv. 6 54763 Google Scholar

    [12]

    Li P T, Yang Y Q, Zhang W, Luo X, Jin N, Liu G 2017 RSC Adv. 7 48315 Google Scholar

    [13]

    刘永利, 赵星, 张宗宁, 张林, 王绍青, 叶恒强 2009 物理学报 58 246 Google Scholar

    Liu Y L, Zhao X, Zhang Z N, Zhang L, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 246 Google Scholar

    [14]

    宋成粉, 樊沁娜, 李蔚, 刘永利, 张林 2011 物理学报 60 063104 Google Scholar

    Song C F, Fan Q N, Li W, Liu Y L, Zhang L 2011 Acta Phys. Sin. 60 063104 Google Scholar

    [15]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950 Google Scholar

    [16]

    Finney J L 1970 Proc. R. Soc. London, Ser. A 319 479 Google Scholar

    [17]

    Liu R S, Dong K J, Tian Z A, Liu H R, Peng P, Yu A B 2007 J. Phys. Condens. Matter 19 751 Google Scholar

    [18]

    Hou Z Y, Li C, Liu L X, Gao Q H, Dong K J 2021 Comput. Mater. Sci. 197 110639 Google Scholar

    [19]

    大东, 彭平, 蒋元祺, 田泽安, 刘让苏 2013 物理学报 62 196101 Google Scholar

    Da D, Peng P, Jiang Y Q, Tian Z A, Liu R S 2013 Acta Phys. Sin. 62 196101 Google Scholar

    [20]

    Plimpton S J 1995 J. Comput. Phys. 117 1 Google Scholar

    [21]

    Zope R R, Mishin Y 2003 Phys. Rev. B 68 366 Google Scholar

    [22]

    Fu R, Rui Z, Dong Y, Luo D, Yan C 2021 Comput. Mater. Sci. 194 110428 Google Scholar

    [23]

    Bizot Q, Politano O, Nepapushev A A, Vadchenko S G, Baras F 2020 J. Appl. Phys. 127 145304 Google Scholar

    [24]

    Wang J S, Horsfield A, Schwingenschlögl U, Lee P D 2010 Phys. Rev. B 82 184203 Google Scholar

    [25]

    Gasser U, Weeks ER, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258 Google Scholar

    [26]

    Wang Z, Wang F, Peng Y, Zheng Z, Han Y 2012 Science 338 87 Google Scholar

    [27]

    E J C, Wang L, Cai Y, Wu H A, Luo S N 2015 J. Chem. Phys. 142 064704 Google Scholar

  • [1] 韦昭召, 马骁, 柯常波, 张新平.  Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, 2020, 69(13): 136102. doi:  10.7498/aps.69.20191903
    [2] 王海燕, 胡前库, 杨文朋, 李旭升.  金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi:  10.7498/aps.65.077101
    [3] 钱泽宇, 张林.  熔融TiAl合金纳米粒子在TiAl(001)基底表面凝结过程中微观结构演变的原子尺度模拟. 物理学报, 2015, 64(24): 243103. doi:  10.7498/aps.64.243103
    [4] 齐玉, 曲昌荣, 王丽, 方腾.  Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, 2014, 63(4): 046401. doi:  10.7498/aps.63.46401
    [5] 危洪清, 龙志林, 许福, 张平, 唐翌.  Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究. 物理学报, 2014, 63(11): 118101. doi:  10.7498/aps.63.118101
    [6] 刘丽霞, 侯兆阳, 刘让苏.  过冷液体钾形核初期微观动力学机理的模拟研究. 物理学报, 2012, 61(5): 056101. doi:  10.7498/aps.61.056101
    [7] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均.  低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, 2011, 60(4): 045209. doi:  10.7498/aps.60.045209
    [8] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明.  储氢笼型水合物生成促进机理的分子动力学模拟研究. 物理学报, 2011, 60(12): 128801. doi:  10.7498/aps.60.128801
    [9] 宋成粉, 樊沁娜, 李蔚, 刘永利, 张林.  TiAl合金薄膜在冷却过程中结构变化的原子尺度计算研究. 物理学报, 2011, 60(6): 063104. doi:  10.7498/aps.60.063104
    [10] 颜超, 段军红, 何兴道.  低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi:  10.7498/aps.59.8807
    [11] 郑晓军, 张俊, 黄忠兵.  扩展哈伯德模型中原子团簇的结构和热力学性质研究. 物理学报, 2010, 59(6): 3897-3904. doi:  10.7498/aps.59.3897
    [12] 侯兆阳, 刘丽霞, 刘让苏, 田泽安.  Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58(7): 4817-4825. doi:  10.7498/aps.58.4817
    [13] 孟丽娟, 李融武, 刘绍军, 孙俊东.  异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi:  10.7498/aps.58.2637
    [14] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊.  Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 物理学报, 2008, 57(5): 3160-3165. doi:  10.7498/aps.57.3160
    [15] 王狂飞, 李邦盛, 任明星, 米国发, 郭景杰, 傅恒志.  Ti-44at%Al合金小尺寸铸件柱状晶/等轴晶演化过程模拟. 物理学报, 2007, 56(6): 3337-3343. doi:  10.7498/aps.56.3337
    [16] 王 清, 羌建兵, 王英敏, 夏俊海, 林 哲, 张新房, 董 闯.  Cu-Zr-Ti系Cu基块体非晶合金的形成和成分优化. 物理学报, 2006, 55(1): 378-385. doi:  10.7498/aps.55.378
    [17] 杨 弘, 陈 民.  深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi:  10.7498/aps.55.2418
    [18] 李邵辉, 王 成, 刘建胜, 王向欣, 李儒新, 倪国权, 徐至展.  飞秒强激光场中大尺寸氩团簇爆炸机理的实验研究. 物理学报, 2005, 54(2): 636-641. doi:  10.7498/aps.54.636
    [19] 叶子燕, 张庆瑜.  低能Pt原子团簇沉积过程的分子动力学模拟. 物理学报, 2002, 51(12): 2798-2803. doi:  10.7498/aps.51.2798
    [20] 林景全, 张杰, 李英骏, 陈黎明, 吕铁铮, 滕浩.  原子团簇对飞秒激光的吸收. 物理学报, 2001, 50(3): 457-461. doi:  10.7498/aps.50.457
目录
  • 第71卷,第1期 - 2022年01月05日
计量
  • 文章访问数:  5694
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-31
  • 修回日期:  2021-09-04
  • 上网日期:  2021-09-15
  • 刊出日期:  2022-01-05

/

返回文章
返回

天下网标王沈阳网站制作优化长春泰安网站优化公司地址高邑网站优化公司长宁区公司官方网站优化哪家好沈河区网站建设优化价格郑州网站优化如何收费营口网站优化联系方式南宁优化网站排襄阳关键词网站优化开封百度网站优化公司包头优化网站建设江北区优化网站徐州网站优化哪家专业优化网站公司外包行业供求信息网站怎么优化大兴网站快速优化兰州网站优化公司电话广水网站优化公司西安企业网站搜索优化技巧黄岛区网站seo优化排名站长上海网站搜索优化优化排名前十的网站seo网站优化哪家好营销型网站优化哪家好收费网站优化软件优化网站搜索长沙优化网站建设优化网站推广哪个比较好青山网站优化优化网站收费标准香港通过《维护国家安全条例》两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”19岁小伙救下5人后溺亡 多方发声卫健委通报少年有偿捐血浆16次猝死汪小菲曝离婚始末何赛飞追着代拍打雅江山火三名扑火人员牺牲系谣言男子被猫抓伤后确诊“猫抓病”周杰伦一审败诉网易中国拥有亿元资产的家庭达13.3万户315晚会后胖东来又人满为患了高校汽车撞人致3死16伤 司机系学生张家界的山上“长”满了韩国人?张立群任西安交通大学校长手机成瘾是影响睡眠质量重要因素网友洛杉矶偶遇贾玲“重生之我在北大当嫡校长”单亲妈妈陷入热恋 14岁儿子报警倪萍分享减重40斤方法杨倩无缘巴黎奥运考生莫言也上北大硕士复试名单了许家印被限制高消费奥巴马现身唐宁街 黑色着装引猜测专访95后高颜值猪保姆男孩8年未见母亲被告知被遗忘七年后宇文玥被薅头发捞上岸郑州一火锅店爆改成麻辣烫店西双版纳热带植物园回应蜉蝣大爆发沉迷短剧的人就像掉进了杀猪盘当地回应沈阳致3死车祸车主疑毒驾开除党籍5年后 原水城县长再被查凯特王妃现身!外出购物视频曝光初中生遭15人围殴自卫刺伤3人判无罪事业单位女子向同事水杯投不明物质男子被流浪猫绊倒 投喂者赔24万外国人感慨凌晨的中国很安全路边卖淀粉肠阿姨主动出示声明书胖东来员工每周单休无小长假王树国卸任西安交大校长 师生送别小米汽车超级工厂正式揭幕黑马情侣提车了妈妈回应孩子在校撞护栏坠楼校方回应护栏损坏小学生课间坠楼房客欠租失踪 房东直发愁专家建议不必谈骨泥色变老人退休金被冒领16年 金额超20万西藏招商引资投资者子女可当地高考特朗普无法缴纳4.54亿美元罚金浙江一高校内汽车冲撞行人 多人受伤

天下网标王 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化